Problems

Age
Difficulty
Found: 2540

Let \(z_1\) and \(z_2\) be fixed points of a complex plane. Give a geometric description of the sets of all points \(z\) that satisfy the conditions:

a) \(\operatorname{arg} \frac{z - z_1}{z - z_2} = 0\);

b) \(\operatorname{arg} \frac{z_1 - z}{z - z_2} = 0\).

Find the largest and smallest values of the functions

a) \(f_1 (x) = a \cos x + b \sin x\); b) \(f_2 (x) = a \cos^2x + b \cos x \sin x + c \sin^2x\).

Prove the formulae: \(\arcsin (- x) = - \arcsin x\), \(\arccos (- x) = \pi - \arccos x\).

Prove that amongst any 7 different numbers it is always possible to choose two of them, \(x\) and \(y\), so that the following inequality was true: \[0 < \frac{x-y}{1+xy} < \frac{1}{\sqrt3}.\]

The Babylonian algorithm for deducing \(\sqrt{2}\). The sequence of numbers \(\{x_n\}\) is given by the following conditions: \(x_1 = 1\), \(x_{n + 1} = \frac 12 (x_n + 2/x_n)\) (\(n \geq 1\)).

Prove that \(\lim\limits_{n\to\infty} x_n = \sqrt{2}\).

What will the sequence from the previous problem 61297 be converging towards if we choose \(x_1\) as equal to \(-1\) as the initial condition?

The iterative formula of Heron. Prove that the sequence of numbers \(\{x_n\}\) given by the conditions \(x_1 = 1\), \(x_{n + 1} = \frac 12 (x_n + k/x_n)\), converges. Find the limit of this sequence.

Old calculator I.

a) Suppose that we want to find \(\sqrt[3]{x}\) (\(x> 0\)) on a calculator that can find \(\sqrt{x}\) in addition to four ordinary arithmetic operations. Consider the following algorithm. A sequence of numbers \(\{y_n\}\) is constructed, in which \(y_0\) is an arbitrary positive number, for example, \(y_0 = \sqrt{\sqrt{x}}\), and the remaining elements are defined by \(y_{n + 1} = \sqrt{\sqrt{x y_n}}\) (\(n \geq 0\)).

Prove that \(\lim\limits_{n\to\infty} y_n = \sqrt[3]{x}\).

b) Construct a similar algorithm to calculate the fifth root.

Method of iterations. In order to approximately solve an equation, it is allowed to write \(f (x) = x\), by using the iteration method. First, some number \(x_0\) is chosen, and then the sequence \(\{x_n\}\) is constructed according to the rule \(x_{n + 1} = f (x_n)\) (\(n \geq 0\)). Prove that if this sequence has the limit \(x * = \lim \limits_ {n \to \infty} x_n\), and the function \(f (x)\) is continuous, then this limit is the root of the original equation: \(f (x ^*) = x^*\).