Problems

Age
Difficulty
Found: 2412

In the country of Mara there are several castles. Three roads lead from each castle. A knight left from one of the castles. Traveling along the roads, he turns from each castle standing in his way, either to the right or to the left depending on the road on which he came. The knight never turns to the side which he turned before it. Prove that one day he will return to the original castle.

Two identical gears have 32 teeth. They were combined and 6 pairs of teeth were simultaneously removed. Prove that one gear can be rotated relative to the other so that in the gaps in one gear where teeth were removed the second gear will have whole teeth.

The sum of 100 natural numbers, each of which is no greater than 100, is equal to 200. Prove that it is possible to pick some of these numbers so that their sum is equal to 100.

A conference was attended by a finite group of scientists, some of whom are friends. It turned out that every two scientists, who have an equal number of friends at the conference, do not have friends in common. Prove that there is a scientist who has exactly one friend among the conference attendees.

There are several squares on a rectangular sheet of chequered paper of size \(m \times n\) cells, the sides of which run along the vertical and horizontal lines of the paper. It is known that no two squares coincide and no square contains another square within itself. What is the largest number of such squares?

In a square with side length 1 there is a broken line, which does not self-intersect, whose length is no less than 200. Prove that there is a straight line parallel to one of the sides of the square that intersects the broken line at a point no less than 101 units along the line.

A square \(ABCD\) contains 5 points. Prove that the distance between some pair of these points does not exceed \(\frac{1}{2} AC\).

Peter bought an automatic machine at the store, which for 5 pence multiplies any number entered into it by 3, and for 2 pence adds 4 to any number. Peter wants, starting with a unit that can be entered free of charge to get the number 1981 on the machine number whilst spending the smallest amount of money. How much will the calculations cost him? What happens if he wants to get the number 1982?