Problems

Age
Difficulty
Found: 2411

Annie found a prime number \(p\) to which you can add \(4\) to make it a perfect square. What is the value of \(p\)?

Let \(a\) and \(b\) be positive real numbers. Using areas of rectangles and squares, show that \(a^2 - b^2 = (a-b) \times (a+b)\).
Try to prove it in two ways, one geometric and one algebraic.

Let \(a\) and \(b\) be positive real numbers. Using volumes of cubes and parallelepipeds, show that \((a+b)^3 = a^3 +3a^2b+3ab^2 +b^3\).
Hint: Place the cubes with sides \(a\) and \(b\) along the same diagonal.

The real numbers \(a,b,c\) are non-zero and satisfy the following equations: \[\left\{ \begin{array}{l} a^2 +a = b^2 \\ b^2 +b = c^2 \\ c^2 +c = a^2. \end{array} \right.\] Show that \((a-b)(b-c)(c-a)=1\).

A five-digit number is called indecomposable if it is not decomposed into the product of two three-digit numbers. What is the largest number of indecomposable five-digit numbers that can come in a row?

Find the representation of \((a+b)^n\) as the sum of \(X_{n,k}a^kb^{n-k}\) for general \(n\). Here by \(X_{n,k}\) we denote coefficients that depend only on \(k\) and \(n\).

The positive real numbers \(a, b, c, x, y\) satisfy the following system of equations: \[\left\{ \begin{aligned} x^2 + xy + y^2 = a^2\\ y^2 + yz + z^2 = b^2\\ x^2 + xz + z^2 = c^2 \end{aligned} \right.\]

Find the value of \(xy + yz + xz\) in terms of \(a, b,\) and \(c.\)

Find all solutions of the equation: \(x^2 + y^2 + z^2 + t^2 = x(y + z + t)\).

Let \(a\) and \(b\) be real numbers. Find a representation of \(a^3 + b^3\) as a product.

  • Find a representation of the number \(117 = 121-4\) as a product.

  • Let \(a\) and \(b\) be real numbers. Find a representation of \(a^2 - b^2\) as a product.