Problems

Age
Difficulty
Found: 2908

In this example we will discuss division with remainder. For polynomials \(f(x)\) and \(g(x)\) with \(\deg(f)\geq \deg(g)\) there always exists polynomials \(q(x)\) and \(r(x)\) such that \[f(x)=q(x)g(x)+r(x)\] and \(\deg(r)<\deg(g)\) or \(r(x)=0\). This should look very much like usual division of numbers, and just like in that case, we call \(f(x)\) the dividend, \(g(x)\) the divisor, \(q(x)\) the quotient, and \(r(x)\) the remainder. If \(r(x)=0\), we say that \(g(x)\) divides \(f(x)\), and we may write \(g(x)\mid f(x)\). Let \(f(x)=x^7-1\) and \(g(x)=x^3+x+1\). Is \(f(x)\) divisible by \(g(x)\)?

We start with the point \(S=(1,3)\) of the plane. We generate a sequence of points with coordinates \((x_n,y_n)\) with the following rule: \[x_0=1,y_0=3\qquad x_{n+1}=\frac{x_n+y_n}{2}\qquad y_{n+1}=\frac{2x_ny_n}{x_n+y_n}\] Is the point \((3,2)\) in the sequence?

Consider a graph with four vertices and where each vertex is connected to every other one (this is called the complete graph of four vertices, sometimes written as \(K_4\)). We write the numbers \(10,20,30,\) and \(40\) on the vertices. We play the following game: choose any vertex, and subtract three from that vertex, and add one to each of the three other vertices, so an example could be:

image

After playing this game for some number of steps, can we make the graph have the number \(25\) on each vertex?

Every year the citizens of the planet “Lotsofteeth" enter a contest in which they find the person with the most teeth. The judge notices that no one this year is toothless and that there are more people than the number of teeth in any single person. Is it true that there are two people with exactly the same number of teeth and why?

Fred and George had two square cakes. Each made two straight cuts on his cake from edge to edge. However, one ended up with three pieces, and the other with four. How could this be?

Remember that two shapes are congruent if they are the same in shape and size, even if one is flipped or turned around. For example, here are two congruent shapes:

image

Cut the following shape into four congruent figures:

image

A cube net is a 2D shape that can be folded into a cube. For example, in the following diagram we show a cube net and the steps that fold it into a cube:

image

Imagine that you want to cover an endless floor with this cube net, so there are no gaps or overlaps, how would you lay them out? This is called covering or tiling the plane.

Cut a square into three parts and use these pieces to form a triangle whose angles are all acute (i.e: less than \(90^\circ\))