In a chess tournament, each participant played two games with each of the other participants: one with white pieces, the other with black. At the end of the tournament, it turned out that all of the participants scored the same number of points (1 point for a victory, \(\frac{1}{2}\) a point for a draw and 0 points for a loss). Prove that there are two participants who have won the same number of games using white pieces.
The grasshopper jumps on the interval \([0,1]\). On one jump, he can get from the point \(x\) either to the point \(x/3^{1/2}\), or to the point \(x/3^{1/2} + (1- (1/3^{1/2}))\). On the interval \([0,1]\) the point \(a\) is chosen.
Prove that starting from any point, the grasshopper can be, after a few jumps, at a distance less than \(1/100\) from point \(a\).
Two different numbers \(x\) and \(y\) (not necessarily integers) are such that \(x^2-2000x=y^2-2000y\). Find the sum of \(x\) and \(y\).
In a mathematical olympiad, \(m>1\) candidates solved \(n>1\) problems. Each candidate solved a different number of problems to all the others. Each problem was solved by a different number of candidates to all the others. Prove that one of the candidates solved exactly one problem.
A teacher filled the squares of a chequered table with \(5\times5\) different integers and gave one copy of it to Janine and one to Zahara. Janine selects the largest number in the table, then she deletes the row and column containing this number, and then she selects the largest number of the remaining integers, then she deletes the row and column containing this number, etc. Zahara performs similar operations, each time choosing the smallest numbers. Can the teacher fill up the table in such a way that the sum of the five numbers chosen by Zahara is greater than the sum of the five numbers chosen by Janine?
All of the sweets of different sorts in stock are arranged in \(n\) boxes, for which prices are set at \(1, 2, \dots , n\), respectively. It is required to buy such \(k\) of these boxes of the least total value, which contain at least \(k/n\) of the mass of all of the sweets. It is known that the mass of sweets in each box does not exceed the mass of sweets in any more expensive box.
a) What boxes should I buy when \(n = 10\) and \(k = 3\)?
b) The same question for arbitrary natural numbers \(n \geq k\).
The bank of the Nile was approached by a group of six people: three Bedouins, each with his wife. At the shore is a boat with oars, which can withstand only two people at a time. A Bedouin can not allow his wife to be without him whilst in the company of another man. Can the whole group cross to the other side?
Is it possible for the mean of some 35 whole numbers to equal \(6.35\)?
The surface of a \(3\times 3\times 3\) Rubik’s Cube contains 54 squares. What is the maximum number of squares we can mark, so that no marked squares share a vertex or are directly adjacent to another marked square?
Is it possible to place 12 identical coins along the edges of a square box so that touching each edge there were exactly: a) 2 coins, b) 3 coins, c) 4 coins, d) 5 coins, e) 6 coins, f) 7 coins.
You are allowed to place coins on top of one another. In the cases where it is possible, draw how this could be done. In the other cases, prove that doing so is impossible.