Is it possible to arrange the numbers 1, 2, ..., 60 in a circle in such an order that the sum of every two numbers, between which lies one number, is divisible by 2, the sum of every two numbers between which lie two numbers, is divisible by 3, the sum of every two numbers between which lie six numbers, is divisible by 7?
A set of weights has the following properties: It contains \(5\) weights, which are all different in weight. For any two weights, there are two other weights of the same total weight. What is the smallest number of weights that can be in this set?
Five teams participated in a football tournament. Each team had to play exactly one match with each of the other teams. Due to financial difficulties, the organisers cancelled some of the games. As a result, it turned out that all teams scored a different number of points and no team scored zero points. What is the smallest number of games that could be played in the tournament, if three points were awarded for a victory, one for a draw and zero for a defeat?
Natural numbers from 1 to 200 are divided into 50 sets. Prove that in one of the sets there are three numbers that are the lengths of the sides of a triangle.
Peter has some coins in his pocket. If Peter pulls \(3\) coins from his pocket, without looking, there will always be a £1 coin among them. If Peter pulls \(4\) coins from his pocket, without looking, there will always be a £2 coin among them. Peter pulls \(5\) coins from his pocket. Identify these coins.
Inside a square with side 1 there are several circles, the sum of the radii of which is 0.51. Prove that there is a line that is parallel to one side of the square and that intersects at least 2 circles.
One day all the truth tellers on the planet decided to carry a clearly visible mark of truth in order to be distinguished from liars. Two truth tellers and two liars met and looked at each other. Which of them could say the phrase:
“All of us are truth tellers.”
“Only one of you is a truth teller.”
“Exactly two of you are truth tellers.”
A New Year’s garland, hanging along the school corridor, consists of red and blue light bulbs. Next to each red light bulb there must necessarily be a blue one. What is the largest number of red light bulbs in this garland, if it consists of only 50 light bulbs?
Looking back at her diary, Natasha noticed that in the date 17/02/2008 the sum of the first four numbers are equal to the sum of the last four. When will this coincidence happen for the last time in 2008?
A cinema contains 7 rows each with 10 seats. A group of 50 children went to see the morning screening of a film, and returned for the evening screening. Prove that there will be two children who sat in the same row for both the morning and the evening screening.