The polynomial \(P (x)\) of degree \(n\) has \(n\) distinct real roots.
What is the largest number of its coefficients that can be equal to zero?
Members of the State parliament formed factions in such a way that for any two factions \(A\) and \(B\) (not necessarily different)
– also a faction (through
the set of all parliament members not included in \(C\) is denoted). Prove that for any two factions \(A\) and \(B\), \(A \cup % \includegraphics{https://problems-static.s3.amazonaws.com/production/task_images/700/109909-3.png} B\) is also a faction.
We call a number \(x\) rational if it can be represented as \(x=\frac{p}{q}\) for coprime integers \(p\) and \(q\). Otherwise we call the number irrational.
Non-zero numbers \(a\) and \(b\) satisfy the equality \(a^2b^2 (a^2b^2 + 4) = 2(a^6 + b^6)\). Prove that at least one of them is irrational.
Prove that in any set of 117 unique three-digit numbers it is possible to pick 4 non-overlapping subsets, so that the sum of the numbers in each subset is the same.
A target consists of a triangle divided by three families of parallel lines into 100 equilateral unit triangles. A sniper shoots at the target. He aims at a particular equilateral triangle and either hits it or hits one of the adjacent triangles that share a side with the one he was aiming for. He can see the results of his shots and can choose when to stop shooting. What is the largest number of triangles that the sniper can guarantee he can hit exactly 5 times?
Can the cells of a \(5 \times 5\) board be painted in 4 colours so that the cells located at the intersection of any two rows and any two columns are painted in at least three colours?
Is it possible to arrange the numbers 1, 2, ..., 60 in a circle in such an order that the sum of every two numbers, between which lies one number, is divisible by 2, the sum of every two numbers between which lie two numbers, is divisible by 3, the sum of every two numbers between which lie six numbers, is divisible by 7?
The sum of the positive numbers \(a, b, c\) is \(\pi / 2\). Prove that \(\cos a + \cos b + \cos c > \sin a + \sin b + \sin c\).
A set of weights has the following properties: It contains \(5\) weights, which are all different in weight. For any two weights, there are two other weights of the same total weight. What is the smallest number of weights that can be in this set?
Five teams participated in a football tournament. Each team had to play exactly one match with each of the other teams. Due to financial difficulties, the organisers cancelled some of the games. As a result, it turned out that all teams scored a different number of points and no team scored zero points. What is the smallest number of games that could be played in the tournament, if three points were awarded for a victory, one for a draw and zero for a defeat?