Decode this rebus: replace the asterisks with numbers such that the equalities in each row are true and such that each number in the bottom row is equal to the sum of the numbers in the column above it.
Decipher the following rebus. Despite the fact that only two figures are known here, and all the others are replaced by asterisks, the question can be restored.
On a table five coins are placed in a row: the middle coin shows heads and the rest show tails. It is allowed to turn over three adjacent coins simultaneously. Is it possible to get all five coins to show heads after turning the coins over several times?
48 blacksmiths must shoe 60 horses. Each blacksmith spends 5 minutes on one horseshoe. What is the shortest time they should spend on the work? (Note that a horse can not stand on two legs.)
In Wonderland, an investigation was conducted into the case of a stolen soup. At the trial, the White Rabbit said that the soup was stolen by the Mad Hatter. The Cheshire Cat and the Mad Hatter also testified, but what they said, no one remembered, and the record was washed away by Alice’s tears. During the court session, it became clear that only one of the defendants had stolen the soup and that only he had given a truthful testimony. So, who stole the soup?
Do you think that among the four consecutive natural numbers there will be at least one that is divisible a) by 2? b) by 3? c) by 4? d) by 5?
The stepmother, leaving for the ball, gave Cinderella a sack which contained a mixture of poppy and millet, and ordered them to be sorted. When Cinderella was leaving for the ball, she left three sacks: one contained millet, the other contained poppy, and in the third – a mixture that had not yet been sorted. In order not to confuse the sacks, Cinderella attached a label to each of them that said: “Poppy seed”, “Millet” and “Mixture”. The stepmother returned from the ball first and deliberately swapped all of the labels in such a way that on each sack there was an incorrect inscription. The fairy godmother managed to warn Cinderella that now none of the labels on the sacks were correct. Then Cinderella took out only one single grain from one sack and, looking at it, immediately guessed what was in each sack. How did she do this?
There are 6 locked suitcases and 6 keys for them. It is not known which keys are for which suitcase. What is the smallest number of attempts do you need in order to open all the suitcases? How many attempts would you need if there are 10 suitcases and keys instead of 6?
Decipher the following rebus
All the digits indicated by the letter “\(E\)” are even (not necessarily equal); all the numbers indicated by the letter \(O\) are odd (also not necessarily equal).
On the table four figures lie in a row: a triangle, a circle, a rectangle and a rhombus. They are painted in different colors: red, blue, yellow, green. It is known that the red figure lies between the blue and green figures; to the right of the yellow figure lies the rhombus; the circle lies to the right of both the triangle and the rhombus; the triangle does not lie on the edge; the blue and yellow figures are not next to each other. Determine in which order the figures lie and what colors they are.