Problems

Age
Difficulty
Found: 2499

Tickets cost 50 cents, and \(2n\) buyers stand in line at a cash register. Half of them have one dollar, the rest – 50 cents. The cashier starts selling tickets without having any money. How many different orders of people can there be in the queue, such that the cashier can always give change?

Prove that the Catalan numbers satisfy the recurrence relationship \(C_n = C_0C_{n-1} + C_1C_{n-2} + \dots + C_{n-1}C_0\). The definition of the Catalan numbers \(C_n\) is given in the handbook.

Determine all prime numbers \(p\) and \(q\) such that \(p^2 - 2q^2 = 1\) holds.

Numbers \(a, b, c\) are integers with \(a\) and \(b\) being coprime. Let us assume that integers \(x_0\) and \(y_0\) are a solution for the equation \(ax + by = c\).

Prove that every solution for this equation has the same form \(x = x_0 + kb\), \(y = y_0 - ka\), with \(k\) being a random integer.

Prove that for a real positive \(\alpha\) and a positive integer \(d\), \(\lfloor \alpha / d\rfloor = \lfloor \lfloor \alpha\rfloor / d\rfloor\) is always satisfied.

Prove that if \(p\) is a prime number and \(1 \leq k \leq p - 1\), then \(\binom{p}{k}\) is divisible by \(p\).

Prove that if \(p\) is a prime number, then \((a + b)^p - a^p - b^p\) is divisible by \(p\) for any integers \(a\) and \(b\).

The numbers \(1, 2,\dots ,99\) are written on 99 cards. Then the cards are shuffled and placed with the number facing down. On the blank side of the cards, the numbers \(1, 2, \dots , 99\) are once again written.

The sum of the two numbers on each card are calculated, and the product of these 99 summations is worked out. Prove that the end result will be an even number.