Problems

Age
Difficulty
Found: 2382

Will thought of a number: 1, 2 or 3. You can ask him only one question, to which he can answer “yes”, “no” or “I do not know”. Can you guess the number by asking just one question?

Peter thought of a number between 1 to 200. What is the fewest number of questions for which you can guess the number if Peter answers

a) “yes ” or “no”;

b) “yes”, “no” or “I do not know”

for every question?

There are 4 coins. Of the four coins, one is fake (it differs in weight from the real ones, but it is not known if it is heavier or lighter). Find the fake coin using two weighings on scales without weights.

Prove the following formulae are true: \[\begin{aligned} a^{n + 1} - b^{n + 1} &= (a - b) (a^n + a^{n-1}b + \dots + b^n);\\ a^{2n + 1} + b^{2n + 1} &= (a + b) (a^{2n} - a^{2n-1}b + a^{2n-2}b^2 - \dots + b^{2n}). \end{aligned}\]

Prove that for \(n> 0\) the polynomial \(nx^{n + 1} - (n + 1) x^n + 1\) is divisible by \((x - 1)^2\).

Let \(a, b\) be positive integers and \((a, b) = 1\). Prove that the quantity cannot be a real number except in the following cases \((a, b) = (1, 1)\), \((1,3)\), \((3,1)\).