A strange wonderland creature is called a painting chameleon. If the queen puts the painting chameleon on a chess-like board then he moves one square at a time along the board either horizontally or vertically. When he moves, he either changes his colour to the colour of the square he moves to, or he paints the square he moves to into his own colour. The queen puts a white painting chameleon on an all-black board \(8\times8\) and orders the chameleon to paint the board into a chessboard. Can he succeed?
The Hatter made 44 hats. Can he put his hats into 9 piles in such a way that the number of hats in each pile is different?
Mary Ann and Alice went to buy some cupcakes. There are at least five different types of cupcakes for sale (all different types are priced differently). Mary Ann says, that whatever two cupcakes Alice buys, Mary Ann can always buy another two cupcakes spending the same amount of money as Alice. What should be the smallest number of cupcakes available for sale at the shop if Mary Ann is not lying?
Alice finally decided to do some arithmetic. She took four different integer numbers, calculated their pairwise sums and products, and the results ( the pairwise sums and products) wrote down in her wonderful book. What could be the smallest number of different numbers Alice wrote in her book?
Alice wants to write down the numbers from 1 to 16 in such a way that the sum of two neighbouring numbers will be a square number. The Hatter tells Alice that he can write down the numbers with this property in a line, but he believes that it is absolutely impossible to write the numbers with this property in a circle. Show that he is right.
Show that \(\frac{x}{y} + {\frac{y}{z}} + {\frac{z}{x}} = 1\) is not solvable in natural numbers.
Can you pay 20 p in seven coins?
Can you pay 20 p in seven coins using 1p and 5p coins only?
Can you pay 25 p in eight coins using 1p and 5p coins only?
(a) Show that it is impossible to find five odd numbers which all add to 100.
(b) Alice wrote several odd numbers on a piece of paper. The Hatter did not see the numbers, but says that if he knew how many numbers Alice wrote down, than he would say with certainty if the sum of the numbers is even or odd. How can he do it?