Problems

Age
Difficulty
Found: 2629

Liouville’s discrete theorem. Let \(f (x, y)\) be a bounded harmonic function (see the definition in problem number 11.28), that is, there exists a positive constant \(M\) such that \(\forall (x, y) \in \mathbb {Z}^2\) \(| f (x, y) | \leq M\). Prove that the function \(f (x, y)\) is equal to a constant.

Definition. The sequence of numbers \(a_0, a_1, \dots , a_n, \dots\), which, with the given \(p\) and \(q\), satisfies the relation \(a_{n + 2} = pa_{n + 1} + qa_n\) (\(n = 0,1,2, \dots\)) is called a linear recurrent sequence of the second order.

The equation \[x^2-px-q = 0\] is called a characteristic equation of the sequence \(\{a_n\}\).

Prove that, if the numbers \(a_0\), \(a_1\) are fixed, then all of the other terms of the sequence \(\{a_n\}\) are uniquely determined.

The frog jumps over the vertices of the hexagon \(ABCDEF\), each time moving to one of the neighbouring vertices.

a) How many ways can it get from \(A\) to \(C\) in \(n\) jumps?

b) The same question, but on condition that it cannot jump to \(D\)?

c) Let the frog’s path begin at the vertex \(A\), and at the vertex \(D\) there is a mine. Every second it makes another jump. What is the probability that it will still be alive in \(n\) seconds?

d)* What is the average life expectancy of such frogs?

Let \((1 + \sqrt {2} + \sqrt {3})^n = p_n + q_n \sqrt {2} + r_n \sqrt {3} + s_n \sqrt {6}\) for \(n \geq 0\). Find:

a) \(\lim \limits_ {n \to \infty} {\frac {p_n} {q_n}}\); b) \(\lim \limits_ {n \to \infty} {\frac {p_n} {r_n}}\); c) \(\lim \limits_ {n \to \infty} {\frac {p_n} {s_n}}\);

Find the generating functions of the sequences of Chebyshev polynomials of the first and second kind: \[F_T(x,z) = \sum_{n=0}^{\infty}T_n(x)z^n;\quad F_U(x,z) = \sum_{n=0}^{\infty}U_n(X)z^n.\]

Definitions of Chebyshev polynomials can be found in the handbook.

We denote by \(P_{k, l}(n)\) the number of partitions of the number \(n\) into at most \(k\) terms, each of which does not exceed \(l\). Prove the equalities:

a) \(P_{k, l}(n) - P_{k, l-1}(n) = P_{k-1, l}(n-l)\);

b) \(P_{k, l}(n) - P_{k-1, l} (n) = P_{k, l-1}(n-k)\);

c) \(P_{k, l}(n) = P_{l, k} (n)\);

d) \(P_{k, l}(n) = P_{k, l} (kl - n)\).

Find the coefficient of \(x\) for the polynomial \((x - a) (x - b) (x - c) \dots (x - z)\).

The following words/sounds are given: look, yar, yell, lean, lease. Determine what will happen if the sounds that make up these words are pronounced in reverse order.