Problems

Age
Difficulty
Found: 2636

Find the coefficient of \(x\) for the polynomial \((x - a) (x - b) (x - c) \dots (x - z)\).

The following words/sounds are given: look, yar, yell, lean, lease. Determine what will happen if the sounds that make up these words are pronounced in reverse order.

Author: D.E. Shnol

On the island of Truthland, all of the inhabitants may be mistaken, but the younger ones never contradict the elders, and when the older ones contradict the younger ones, they (the elders) are not mistaken. Between the residents A, B and C there was such a conversation:

A: B is the tallest.

B: A is the tallest.

C: I’m taller than B.

Does it follow from this conversation that the younger the person, the taller he or she is (for the three people having this conversation)?

Author: I.V. Izmestyev

Postman Pat did not want to give away the parcel. So, Matt suggested that he play the following game: every move, Pat writes in a line from left to right the letters M and P, randomly alternating them, until he has a line made up of 11 letters. Matt, after each of Pat’s moves, if he wants, swaps any two letters. If in the end it turns out that the recorded word is a palindrome (that is, it is the same if read from left to right and right to left), then Pat gives Matt the parcel. Can Matt play in such a way as to get the parcel?

Authors: Folklore

There are 13 pupils in the school of witchcraft and wizardry. Before the Clairvoyance exam, the teacher put them at a round table and asked to guess who would receive the clairvoyant’s diploma. The students said nothing about themselves and two of their neighbours, but they wrote the following about all of the others: “None of these ten will get the diploma!" Of course, all of those who passed the exam guessed correctly, and all of the other students were mistaken. How many wizards received a diploma?

Find the largest number of colours in which you can paint the edges of a cube (each edge with one colour) so that for each pair of colours there are two adjacent edges coloured in these colours. Edges are considered to be adjacent if they have a common vertex.

Prove that the polynomial \(P (x)\) is divisible by its derivative if and only if \(P (x)\) has the form \(P(x) = a_n(x - x_0)^n\).

Prove that for \(n > 0\) the polynomial \[P (x) = n^2x^{n + 2} - (2n^2 + 2n - 1) x^{n + 1} + (n + 1)^2x^n - x - 1\] is divisible by \((x - 1)^3\).

Prove that for \(n> 0\) the polynomial \(x^{2n + 1} - (2n + 1)x^{n + 1} + (2n + 1)x^n - 1\) is divisible by \((x - 1)^3\).