Problems

Age
Difficulty
Found: 2381

On a lottery ticket, it is necessary for Mary to mark 8 cells from 64. What is the probability that after the draw, in which 8 cells from 64 will also be selected (all such possibilities are equally probable), it turns out that Mary guessed

a) exactly 4 cells? b) exactly 5 cells? c) all 8 cells?

Author: L.N. Vaserstein

For any natural numbers \(a_1, a_2, \dots , a_m\), no two of which are equal to each other and none of which is divisible by the square of a natural number greater than one, and also for any integers and non-zero integers \(b_1, b_2, \dots , b_m\) the sum is not zero. Prove this.

Prove that for any positive integer \(n\), it is always possible to find a number, consisting of the digits \(1\) and \(2,\) that is divisible by \(2^n\). (For example, \(2\) is divisible by \(2\), \(12\) is divisible by \(4,\) \(112\) is divisible by \(8,\) \(2112\) is divisible by \(16\) and so on...).

A sequence of natural numbers \(a_1 < a_2 < a_3 < \dots < a_n < \dots\) is such that each natural number is either a term in the sequence, can be expressed as the sum of two terms in the sequence, or perhaps the same term twice. Prove that \(a_n \leq n^2\) for any \(n=1, 2, 3,\dots\)

Out of the given numbers 1, 2, 3, ..., 1000, find the largest number \(m\) that has this property: no matter which \(m\) of these numbers you delete, among the remaining \(1000 - m\) numbers there are two, of which one is divisible by the other.

Author: A.A. Egorov

Calculate the square root of the number \(0.111 \dots 111\) (100 ones) to within a) 100; b) 101; c)* 200 decimal places.

The triangle \(C_1C_2O\) is given. Within it the bisector \(C_2C_3\) is drawn, then in the triangle \(C_2C_3O\) – bisector \(C_3C_4\) and so on. Prove that the sequence of angles \(\gamma_n = C_{n + 1}C_nO\) tends to a limit, and find this limit if \(C_1OC_2 = \alpha\).

A rectangular chocolate bar size \(5 \times 10\) is divided by vertical and horizontal division lines into 50 square pieces. Two players are playing the following game. The one who starts breaks the chocolate bar along some division line into two rectangular pieces and puts the resulting pieces on the table. Then players take turns doing the same operation: each time the player whose turn it is at the moment breaks one of the parts into two parts. The one who is the first to break off a square slice \(1\times 1\) (without division lines) a) loses; b) wins. Which of the players can secure a win: the one who starts or the other one?

The triangle visible in the picture is equilateral. The hexagon inside is a regular hexagon. If the area of the whole big triangle is \(18\), find the area of the small blue triangle.