Problems

Age
Difficulty
Found: 2378

You have 26 constants, labeled \(A\) through \(Z\). Let \(A\) equal 1. The other constants have values equal to the letter’s position in the alphabet, raised to the power of the previous constant. That means that \(B\) (the second letter) = \(2^A=2^1= 2\), \(C = 3^B=3^2= 9\), and so on. Find the exact numerical value for this expression: \[(X-A)(X-B)(X-C)\dots (X-Y)(X-Z).\]

Remove a \(1 \times 1\) square from the corner of a \(4 \times 4\) square. Can this shape be dissected into \(3\) congruent parts?
image

Max asked Emily how old she was. She replied that she was 13 years old the day before yesterday, and will be 16 next year. Then, Max asked her brother, whether it was true, and he said yes. How is it possible if nobody was lying?

Ten little circles are drawn on a squared board \(4\times4\).

Cut the board into identical parts in such a way that each part contains 1, 2, 3, and 4 drawn circles correspondingly.

The date 21.02.2012 reads the same forwards and backwords (such numbers are called palindromes). Are there any more palindrome dates in the twenty first centuary?

Do there exist three natural numbers such that neither of them divide each other, but each number divides the product of the other two?

Find all the solutions of the puzzle and prove there are no others. Different letters denote different digits, while the same letters correspond to the same digits. \[M+MEEE=BOOO.\]

Philip and Denis cut a watermelon into four parts. When they finished eating watermelon (they ate the whole thing), they discovered that there were five watermelon rinds left. How is it possible, if no rind was cut after the initial cutting?

Place coins on a \(6\times 6\) chequered board (one coin on one square), so that all the horizontal lines contain different number of coins, and all vertical lines contain the same number of coins.