Problems

Age
Difficulty
Found: 1941

From the examples above, we see that we often need to pick \(k\) objects from \(n\) objects where the order of the \(k\) objects is ignored. The number of ways to pick them is notated with the special symbol \(\binom{n}{k}\), pronounced “\(n\) choose \(k\)". Following a similar line of reasoning as the examples, we can write down a general formula:

\[\binom{n}{k} = \frac{n\times (n-1) \times \dots (n-k+1)}{k\times (k-1) \times \dots 1} = \frac{n!}{k!(n-k)!}.\]

\(n!\) is a shorthand for \(n\times (n-1)\times \dots \times 1\), pronounced “\(n\) factorial". This is another useful expression and allows us to write down many formulas succinctly.