Tile a \(5\times6\) rectangle in an irreducible way by laying \(1\times2\) rectangles.
Does there exist an irreducible tiling with \(1\times2\) rectangles of a \(4\times 6\) rectangle?
Irreducibly tile a floor with \(1\times2\) tiles in a room that is a \(5\times8\) rectangle.
Tile the whole plane with the following shapes:
David Smith cut out 12 nets. He claimed that it was possible to make a cube out of each net. Roger Penrosae looked at the patterns, and after some considerable thought decided that he was able to make cubes from all the nets except one. Can you figure out which net cannot make a cube?
It is known that it is possible to cover the plane with any cube’s net. Show how you can cover the plane with nets below:
On the second day Robinson Crusoe stretched the rope between two pegs, put a ring on the rope, and tied the goat with another rope to the ring. What shape did the goat graze in this case?
On the third day Robinson Crusoe put two pegs again, and decided not to stretch the rope, but to tie the goat with two loose ropes of different lengths to those pegs. What shape did the goat graze on the third day?
One day Robinson Crusoe decided to take his usual walk, and followed his path on a plateau holding his goat on the lead of 1 m length. Draw the shape of the area where the goat could have being eating grass while walking along Robinson Crusoe. The path they followed was exactly in the shape of 1 km\({}\times{}\)3 km rectangle.