A supermarket received a delivery of 25 crates of apples of 3 different types; each crate contains only one type of apple. Prove that there are at least 9 crates of apples of the same sort in the delivery.
In Scotland there are
You are given 8 different natural numbers that are no greater than 15. Prove that there are three pairs of these numbers whose positive difference is the same.
Prove that in any group of 5 people there will be two who know the same number of people in that group.
Several football teams are taking part in a football tournament, where each team plays every other team exactly once. Prove that at any point in the tournament there will be two teams who have played exactly the same number of matches up to that point.
a) What is the maximum number of squares on an
b) What is the maximum number of squares on an
10 school students took part in a Mathematical Olympiad and solved 35 problems in total. It is known that there were students who solved exactly one problem, students who solved exactly two problems, and students who solved exactly three problems. Prove that there is a student who solved exactly 5 problems.
What is the maximum number of kings you could place on a chess board such that no two of them were attacking each other – that is, no two kings are on horizontally, vertically, or diagonally adjacent squares. Kings can move in any direction, but only one square at a time.
Prove that it is not possible to completely cover an equilateral triangle with two smaller equilateral triangles.
51 points were thrown into a square of side 1 m. Prove that it is possible to cover some set of 3 points with a square of side 20 cm.