Problems

Age
Difficulty
Found: 2381

There are a thousand tickets with numbers 000, 001, ..., 999 and a hundred boxes with the numbers 00, 01, ..., 99. A ticket is allowed to be dropped into a box if the number of the box can be obtained from the ticket number by erasing one of the digits. Is it possible to arrange all of the tickets into 50 boxes?

The nonzero numbers \(a\), \(b\), \(c\) are such that every two of the three equations \(ax^{11} + bx^4 + c = 0\), \(bx^{11} + cx^4 + a = 0\), \(cx^{11} + ax^4 + b = 0\) have a common root. Prove that all three equations have a common root.

At a round table, 30 people are sitting – knights and liars (knights always tell the truth, and liars always lie). It is known that each of them at that table has exactly one friend, and for each knight this friend is a liar, and for a liar this friend is a knight (friendship is always mutual). To the question “Does your friend sit next to you?” those in every other seat answered “yes”. How many of the others could also have said “Yes”?

In the equality \(TIME + TICK = SPIT\), replace the same letters with the same numbers, and different letters with different digits so that the word \(TICK\) is as small as possible (there are no zeros among the digits).

Four children said the following about each other.

Mary: Sarah, Nathan and George solved the problem.

Sarah: Mary, Nathan and George didn’t solve the problem.

Nathan: Mary and Sarah lied.

George: Mary, Sarah and Nathan told the truth.

How many of the children actually told the truth?

On a board there are written four three-digit numbers, totaling 2012. To write them all, only two different digits were used.

Give an example of such numbers.

The teacher wrote on the board in alphabetical order all possible \(2^n\) words consisting of \(n\) letters A or B. Then he replaced each word with a product of \(n\) factors, correcting each letter A by \(x\), and each letter B by \((1 - x)\), and added several of the first of these polynomials in \(x\). Prove that the resulting polynomial is either a constant or increasing function in \(x\) on the interval \([0, 1]\).

The graph of the function \(y=kx+b\) is shown on the diagram below. Compare \(|k|\) and \(|b|\).