Problems

Age
Difficulty
Found: 3150

The function \(f (x)\) is defined on the positive real \(x\) and takes only positive values. It is known that \(f (1) + f (2) = 10\) and \(f(a+b) = f(a) + f(b) + 2\sqrt{f(a)f(b)}\) for any \(a\) and \(b\). Find \(f (2^{2011})\).

Suppose that: \[\frac{x+y}{x-y}+\frac{x-y}{x+y} =3.\] Find the value of the following expression: \[\frac{x^2 +y^2}{x^2-y^2} + \frac{x^2 -y^2}{x^2+y^2}.\]

After a circus came back from its country-wide tour, relatives of the animal tamer asked him questions about which animals travelled with the circus.

“Where there tigers?”

“Yes, in fact, there were seven times more tigers than non-tigers.”

“What about monkeys?”

“Yes, there were seven times less monkeys than non-monkeys.”

“Where there any lions?”

What is the answer he gave to this last question?

There are 100 boxes numbered from 1 to 100. In one box there is a prize and the presenter knows where the prize is. The spectator can send the presented a pack of notes with questions that require a “yes” or “no” answer. The presenter mixes the notes in a bag and, without reading out the questions aloud, honestly answers all of them. What is the smallest number of notes you need to send to know for sure where the prize is?

Solve this equation: \[(x+2010)(x+2011)(x+2012)=(x+2011)(x+2012)(x+2013).\]

There are a thousand tickets with numbers 000, 001, ..., 999 and a hundred boxes with the numbers 00, 01, ..., 99. A ticket is allowed to be dropped into a box if the number of the box can be obtained from the ticket number by erasing one of the digits. Is it possible to arrange all of the tickets into 50 boxes?

The nonzero numbers \(a\), \(b\), \(c\) are such that every two of the three equations \(ax^{11} + bx^4 + c = 0\), \(bx^{11} + cx^4 + a = 0\), \(cx^{11} + ax^4 + b = 0\) have a common root. Prove that all three equations have a common root.