Problems

Age
Difficulty
Found: 2335

Find the number of rectangles made up of the cells of a board with \(m\) horizontals and \(n\) verticals that contain a cell with the coordinates \((p, q)\).

Prove that there is no graph with five vertices whose degrees are equal to 4, 4, 4, 4, 2.

Prove that there exists a graph with 2n vertices whose degrees are \(1, 1, 2, 2, \dots , n, n\).

Prove that a graph, in which every two vertices are connected by exactly one simple path, is a tree.

Prove that, in a tree, every two vertices are connected by exactly one simple path.

Prove that there is a vertex in the tree from which exactly one edge emerges (such a vertex is called a hanging top).

In a graph, all the vertices have degree of 3. Prove that there is a cycle in it.

There are seven lakes in some country, connected by ten non-overlapping canals, and each lake can be reached from any other. How many islands are there in this country?