In one urn there are two white balls, in another two black ones, in the third – one white and one black. On each urn there was a sign indicating its contents: WW, BB, WB. Someone rehung the signs so that now each sign indicating the contents of the urn is incorrect. It is possible to remove a ball from any urn without looking into it. What is the minimum number of removals required to determine the composition of all three urns?
Prove that no straight line can cross all three sides of a triangle, at points away from the vertices.
A circle is divided up by the points \(A, B, C, D\) so that \({\smile}{AB}:{\smile}{BC}:{\smile}{CD}:{\smile}{DA} = 2: 3: 5: 6\). The chords \(AC\) and \(BD\) intersect at point \(M\). Find the angle \(AMB\).
A circle is divided up by the points \(A\), \(B\), \(C\), \(D\) so that \({\smile}{AB}:{\smile}{BC}:{\smile}{CD}:{\smile}{DA} = 3: 2: 13: 7\). The chords \(AD\) and \(BC\) are continued until their intersection at point \(M\). Find the angle \(AMB\).
The angles of a triangle are in the ratio \(2: 3: 4\). Find the ratio of the outer angles of the triangle.
One angle of a triangle is equal to the sum of its other two angles. Prove that the triangle is right-angled.
Prove that the segment connecting the vertex of an isosceles triangle to a point lying on the base is no greater than the lateral side of the triangle.
Ten straight lines are drawn through a point on a plane cutting the plane into angles.
Prove that at least one of these angles is less than \(20^{\circ}\).
In an isosceles triangle, the sides are equal to either 3 or 7. Which side length is the base?
A rectangular billiard with sides 1 and \(\sqrt {2}\) is given. From its angle at an angle of \(45 ^\circ\) to the side a ball is released. Will it ever get into one of the pockets? (The pockets are in the corners of the billiard table).