To transmit messages by telegraph, each letter of the Russian alphabet () ( and are counted as identical) is represented as a five-digit combination of zeros and ones corresponding to the binary number of the given letter in the alphabet (letter numbering starts from zero). For example, the letter is represented in the form 00000, letter -00001, letter -10111, letter -11111. Transmission of the five-digit combination is made via a cable containing five wires. Each bit is transmitted on a separate wire. When you receive a message, Cryptos has confused the wires, so instead of the transmitted word, a set of letters is received. Find the word you sent.
Sam and Lena have several chocolates, each weighing not more than 100 grams. No matter how they share these chocolates, one of them will have a total weight of chocolate that does not exceed 100 grams. What is the maximum total weight of all of the chocolates?
A straight corridor of length 100 m is covered with 20 rugs that have a total length of 1 km. The width of each rug is equal to the width of the corridor. What is the longest possible total length of corridor that is not covered by a rug?
In one urn there are two white balls, in another two black ones, in the third – one white and one black. On each urn there was a sign indicating its contents: WW, BB, WB. Someone rehung the signs so that now each sign indicating the contents of the urn is incorrect. It is possible to remove a ball from any urn without looking into it. What is the minimum number of removals required to determine the composition of all three urns?
Prove that no straight line can cross all three sides of a triangle, at points away from the vertices.
A circle is divided up by the points \(A, B, C, D\) so that \({\smile}{AB}:{\smile}{BC}:{\smile}{CD}:{\smile}{DA} = 2: 3: 5: 6\). The chords \(AC\) and \(BD\) intersect at point \(M\). Find the angle \(AMB\).
A circle is divided up by the points \(A\), \(B\), \(C\), \(D\) so that \({\smile}{AB}:{\smile}{BC}:{\smile}{CD}:{\smile}{DA} = 3: 2: 13: 7\). The chords \(AD\) and \(BC\) are continued until their intersection at point \(M\). Find the angle \(AMB\).
The angles of a triangle are in the ratio \(2: 3: 4\). Find the ratio of the outer angles of the triangle.
One angle of a triangle is equal to the sum of its other two angles. Prove that the triangle is right-angled.
Prove that the segment connecting the vertex of an isosceles triangle to a point lying on the base is no greater than the lateral side of the triangle.