Problems

Age
Difficulty
Found: 2041

How many ways can you choose four people for four different positions, if there are nine candidates for these positions?

Out of two mathematicians and ten economists, it is necessary to form a committee made up of eight people. In how many ways can a committee be formed if it has to include at least one mathematician?

On two parallel lines \(a\) and \(b\), the points \(A_1, A_2, \dots , A_m\) and \(B_1, B_2, \dots , B_n\) are chosen, respectively, and all of the segments of the form \(A_iB_j\), where \(1 \leq i \leq m\), \(1 \leq j \leq n\). How many intersection points will there be if it is known that no three of these segments intersect at one point?

How many six-digit numbers exist, for which each succeeding number is smaller than the previous one?

Calculate the following sums:

a) \(\binom{5}{0} + 2\binom{5}{1} + 2^2\binom{5}{2} + \dots +2^5\binom{5}{5}\);

b) \(\binom{n}{0} - \binom{n}{1} + \dots + (-1)^n\binom{n}{n}\);

c) \(\binom{n}{0} + \binom{n}{1} + \dots + \binom{n}{n}\).