Problems

Age
Difficulty
Found: 2172

Two circles of radius \(R\) intersect at points \(D\) and \(B\). Let \(F\) and \(G\) be the points of intersection of the middle perpendicular to the segment \(BD\) with these circles lying on one side of the line \(BD\). Prove that \(BD^2 + FG^2 = 4R^2\).

Inside the rectangle \(ABCD\), the point \(E\) is taken. Prove that there exists a convex quadrilateral with perpendicular diagonals of lengths \(AB\) and \(BC\) whose sides are equal to \(AE\), \(BE\), \(CE\), \(DE\).

The opposite sides of a convex hexagon are pairwise equal and parallel. Prove that it has a centre of symmetry.

A parallelogram \(ABCD\) and a point \(E\) are given. Through the points \(A, B, C, D\), lines parallel to the straight lines \(EC, ED, EA,EB\), respectively, are drawn. Prove that they intersect at one point.

A quadrilateral has an axis of symmetry. Prove that this quadrilateral is either an isosceles trapezoid or is symmetric with respect to its diagonal.

The symmetry axis of the polygon intersects its sides at points \(A\) and \(B\). Prove that the point \(A\) is either the vertex of the polygon or the middle of the side perpendicular to the axis of symmetry.