Problems

Age
Difficulty
Found: 2040

Find the largest value of the expression \(a + b + c + d - ab - bc - cd - da\), if each of the numbers \(a\), \(b\), \(c\) and \(d\) belongs to the interval \([0, 1]\).

Hannah placed 101 counters in a row which had values of 1, 2 and 3 points. It turned out that there was at least one counter between every two one point counters, at least two counters lie between every two two point counters, and at least three counters lie between every two three point counters. How many three point counters could Hannah have?

A chequered strip of \(1 \times N\) is given. Two players play the game. The first player puts a cross into one of the free cells on his turn, and subsequently the second player puts a nought in another one of the cells. It is not allowed for there to be two crosses or two noughts in two neighbouring cells. The player who is unable to make a move loses.

Which of the players can always win (no matter how their opponent played)?

We are given 111 different natural numbers that do not exceed 500. Could it be that for each of these numbers, its last digit coincides with the last digit of the sum of all of the remaining numbers?

The number \(x\) is such a number that exactly one of the four numbers \(a = x - \sqrt{2}\), \(b = x-1/x\), \(c = x + 1/x\), \(d = x^2 + 2\sqrt{2}\) is not an integer. Find all such \(x\).

Peter marks several cells on a \(5 \times 5\) board. His friend, Richard, will win if he can cover all of these cells with non-overlapping corners of three squares, that do not overlap with the border of the square (you can only place the corners on the squares). What is the smallest number of cells that Peter should mark so that Richard cannot win?

A group of several friends was in correspondence in such a way that each letter was received by everyone except for the sender. Each person wrote the same number of letters, as a result of which all together the friends received 440 letters. How many people could be in this group of friends?

In the Republic of mathematicians, the number \(\alpha > 2\) was chosen and coins were issued with denominations of 1 pound, as well as in \(\alpha^k\) pounds for every natural \(k\). In this case \(\alpha\) was chosen so that the value of all the coins, except for the smallest, was irrational. Could it be that any amount of a natural number of pounds can be made with these coins, using coins of each denomination no more than 6 times?

In the isosceles triangle \(ABC\), the angle \(B\) is equal to \(30^{\circ}\), and \(AB = BC = 6\). The height \(CD\) of the triangle \(ABC\) and the height \(DE\) of the triangle \(BDC\) are drawn. Find the length \(BE\).

Three players are playing knockout table tennis – that is, the player who loses a game swaps places with the player who did not take part in that game and the winner stays on. In total Andrew played 10 games, Ben played 15, and Charlotte played 17. Which player lost the second game played?