On an island there are 1,234 residents, each of whom is either a knight (who always tells the truth) or a liar (who always lies). One day, all of the inhabitants of the island were broken up into pairs, and each one said: “He is a knight!" or “He is a liar!" about his partner. Could it eventually turn out to be that the number of “He is a knight!" and “He is a liar!" phrases is the same?
Solve the inequality: \(|x + 2000| <|x - 2001|\).
Determine all natural numbers \(m\) and \(n\) such as \(m! + 12 = n^2\).
Solving the problem: “What is the solution of the expression \(x^{2000} + x^{1999} + x^{1998} + 1000x^{1000} + 1000x^{999} + 1000x^{998} + 2000x^3 + 2000x^2 + 2000x + 3000\) (\(x\) is a real number) if \(x^2 + x + 1 = 0\)?”, Vasya got the answer of 3000. Is Vasya right?
Prove that amongst the numbers of the form \[19991999\dots 19990\dots 0\] – that is 1999 a number of times, followed by a number of 0s – there will be at least one divisible by 2001.
There are three piles of rocks: in the first pile there are 10 rocks, 15 in the second pile and 20 in the third pile. In this game (with two players), in one turn a player is allowed to divide one of the piles into two smaller piles. The loser is the one who cannot make a move. Which player would be the winner?
In the first pile there are 100 sweets and in the second there are 200. Consider the game with two players where: in one turn a player can take any amount of sweets from one of the piles. The winner is the one who takes the last sweet. Which player would win by using the correct strategy?
Let \(M\) be the point of intersection of the medians of the triangle \(ABC\), and \(O\) an arbitrary point on a plane. Prove that \[OM^2 = 1/3 (OA^2 + OB^2 + OC^2) - 1/9 (AB^2 + BC^2 + AC^2).\]
Three non-coplanar vectors are given. Is it possible to find a fourth vector perpendicular to the three vectors given?
Find the volume of an inclined triangular prism whose base is an equilateral triangle with sides equal to a if the side edge of the prism is equal to the side of the base and is inclined to the plane of the base at an angle of \(60^{\circ}\).