Problems

Age
Difficulty
Found: 2763

Show that for any number \(a,b,c,d\), we have \((a+b)(c+d) = ac + ad + bc + bd\).

Expand \((x_1+\dots + x_n)^2\) where \(x_1,\dots,x_n\) are real numbers.

Prove the Cauchy-Schwarz inequality \[(a_1b_1+\dots+a_nb_n)^2\leq (a_1^2+\dots+a_n^2)(b_1^2+\dots+b_n^2)\] where \(a_1,\dots,a_n,b_1,\dots,b_n\) are real numbers. If you already know a proof (or more!), find a new one.