You have an \(n\times m\) chocolate bar. You break the bar into two pieces along a line between its squares, then your friend and you take turns (your friend starts) choosing one of the pieces and breaking it again along a line between its squares. The player who cannot make a move loses. For which values of \(n\) and \(m\) do you win?
Darya has made eleven pancakes, each has an area of \(1\), but each pancake can have a different shape. She places them carefully on a plate of area \(6\). Show that if the pancakes fit entirely inside the plate, then there must be two pancakes that overlap by at least an area of \(1/11\).
Four points \(A,B,C,D\) are chosen on the sides of a square of side length \(1\). The quadrilateral with vertices \(A,B,C,D\) has side lengths \(a,b,c,d\) as in the picture below. Show that \(2\leq a^2+b^2+c^2+d^2\leq 4\).

Let \(a, b, c\) be numbers such that \(a^2 + b^2 + c^2 = 1\). Show that \[-\frac12 \leq ab + bc + ac \leq 1.\]
An ordered triple of numbers is given. It is permitted to perform the following operation on the triple: to change two of them, say \(a\) and \(b\), to \(\frac{a+b}{\sqrt{2}}\) and \(\frac{a-b}{\sqrt{2}}\). Is it possible to obtain the triple \((1,\sqrt{2},1+\sqrt{2})\) from the triple \((2,\sqrt{2},\frac{1}{\sqrt{2}})\) using this operation?
(USAMO 1997) Let \(p_1, p_2, p_3,\dots\) be the prime numbers listed in increasing order, and let \(0 < x_0 < 1\) be a real number between 0 and 1. For each positive integer \(k\), define \[x_k = \begin{cases} 0 & \text{ if } x_{k-1} = 0 \\ \left\{\frac{p_k}{x_{k-1}} \right\} & \text{ if } x_{k-1} \neq 0 \end{cases}\] where \(\{x\}\) denotes the fractional part of \(x\). For example, \(\{2.53\} = 0.53\) and \(\{3.1415926...\} = 0.1415926...\). Find, with proof, all \(x_0\) satisfying \(0 <x_0 <1\) for which the sequence \(x_0, x_1, x_2,\dots\) eventually becomes 0.
Take the number \(2026^{2026}\). We remove the leading digit and add it to the remaining number. This action is repeated until there are exactly \(10\) digits left. Show that there must be two digits that are the same in the end.