Problems

Age
Difficulty
Found: 2037

There is a group of 5 people: Alex, Beatrice, Victor, Gregory and Deborah. Each of them has one of the following codenames: V, W, X, Y, Z. We know that:

Alex is 1 year older than V,

Beatrice is 2 years older than W,

Victor is 3 years older than X,

Gregory is 4 years older than Y.

Who is older and by how much: Deborah or Z?

Compare the numbers: \(A=2011\times 20122012\times 201320132013\) and \(B= 2013\times 20112011 \times 201220122012\).

A supermarket received a delivery of 25 crates of apples of 3 different types; each crate contains only one type of apple. Prove that there are at least 9 crates of apples of the same sort in the delivery.

In Scotland there are \(m\) football teams containing 11 players each. All of the players met at the airport in order to travel to England for a match. The plane made 10 journeys from Scotland to England, carrying 10 passengers each time. One player also flew to the location of the match by helicopter. Prove that at least one team made it in its entirety to the other country to play the match.

You are given 8 different natural numbers that are no greater than 15. Prove that there are three pairs of these numbers whose positive difference is the same.

Prove that in any group of 5 people there will be two who know the same number of people in that group.

Several football teams are taking part in a football tournament, where each team plays every other team exactly once. Prove that at any point in the tournament there will be two teams who have played exactly the same number of matches up to that point.

a) What is the maximum number of squares on an \(8\times 8\) grid that can be shaded in with a black pen such that each ‘L’ shaped group of 3 squares has at least one unshaded square.

b) What is the maximum number of squares on an \(8\times 8\) grid that can be shaded in with a black pen, such that each ‘L’ shaped group of 3 squares has at least one shaded square.