Problems

Age
Difficulty
Found: 2290

Prove that: \[a_1 a_2 a_3 \cdots a_{n-1}a_n \times 10^3 \equiv a_{n-1} a_n \times 10^3 \pmod4,\] where \(n\) is a natural number and \(a_i\) for \(i=1,2,\ldots, n\) are the digits of some number.

How many ways can Susan choose 4 colours from 7 different ones?

On the plane, 10 points are marked so that no three of them lie on the same line. How many triangles are there with vertices at these points?

Prove that out of \(n\) objects an even number of objects can be chosen in \(2^{n-1}\) ways.