The sequence of numbers \(a_1, a_2, a_3, \dots\) is given by the following conditions \(a_1 = 1\), \(a_{n + 1} = a_n + \frac {1} {a_n^2}\) (\(n \geq 0\)).
Prove that
a) this sequence is unbounded;
b) \(a_{9000} > 30\);
c) find the limit \(\lim \limits_ {n \to \infty} \frac {a_n} {\sqrt [3] n}\).
There are 13 weights. It is known that any 12 of them could be placed in 2 scale cups with 6 weights in each cup in such a way that balance will be held.
Prove the mass of all the weights is the same, if it is known that:
a) the mass of each weight in grams is an integer;
b) the mass of each weight in grams is a rational number;
c) the mass of each weight could be any real (not negative) number.
Prove that \(\sqrt{\frac{a^2 + b^2}{2}} \geq \frac{a+b}{2}\).
We are given rational positive numbers \(p, q\) where \(1/p + 1/q = 1\). Prove that for positive \(a\) and \(b\), the following inequality holds: \(ab \leq \frac{a^p}{p} + \frac{b^q}{q}\).
Prove that the equation \(\frac {x}{y} + \frac {y}{z} + \frac {z}{x} = 1\) is unsolvable using positive integers.
Prove the inequality: \[\frac{(b_1 + \dots b_n)^{b_1 + \dots b_n}}{(a_1 + \dots a_n)^{b_1 + \dots + b_n}}\leq \left(\frac{b_1}{a_1}\right)^{b_1}\dots \left( \frac{b_n}{a_n}\right)^{b_n}\] where all variables are considered positive.
Prove that if the function \(f (x)\) is convex upwards on the line \([a, b]\), then for any distinct points \(x_1, x_2\) in \([a; b]\) and for any positive \(\alpha_{1}, \alpha_{2}\) such that \(\alpha_{1} + \alpha_ {2} = 1\) the following inequality holds: \(f(\alpha_1 x_1 + \alpha_2 x_2 ) > \alpha_1 f (x_1) + \alpha_2 f(x_2)\).
Inequality of Jensen. Prove that if the function \(f (x)\) is convex upward on \([a, b]\), then for any distinct points \(x_1, x_2, \dots , x_n\) (\(n \geq 2\)) from \([a; b]\) and any positive \(\alpha_{1}, \alpha_{2}, \dots , \alpha_{n}\) such that \(\alpha_ {1} + \alpha_{2} + \dots + \alpha_{n} = 1\), the following inequality holds: \(f (\alpha_{1} x_1 + \dots + \alpha_{n} x_n) > \alpha_{1} f (x_1) + \dots + \alpha_{n} f (x_n)\).
Let \(p\) and \(q\) be positive numbers where \(1 / p + 1 / q = 1\). Prove that \[a_1b_1 + a_2b_2 + \dots + a_nb_n \leq (a_1^p + \dots a_n^p)^{1/p}(b_1^q +\dots + b_n^q)^{1/q}\] The values of the variables are considered positive.
Draw all of the stairs made from four bricks in descending order, starting with the steepest \((4, 0, 0, 0)\) and ending with the shallowest \((1, 1, 1, 1)\).