A polynomial of degree \(n > 1\) has \(n\) distinct roots \(x_1, x_2, \dots , x_n\). Its derivative has the roots \(y_1, y_2, \dots , y_{n-1}\). Prove the inequality \[\frac{x_1^2 + \dots + x_n^2}{n}> \frac{y_1^2 + \dots + y_n^2}{n}.\]
We are given 111 different natural numbers that do not exceed 500. Could it be that for each of these numbers, its last digit coincides with the last digit of the sum of all of the remaining numbers?
The number \(x\) is such a number that exactly one of the four numbers \(a = x - \sqrt{2}\), \(b = x-1/x\), \(c = x + 1/x\), \(d = x^2 + 2\sqrt{2}\) is not an integer. Find all such \(x\).
The numbers \(x\), \(y\) and \(z\) are such that all three numbers \(x + yz\), \(y + zx\) and \(z + xy\) are rational, and \(x^2 + y^2 = 1\). Prove that the number \(xyz^2\) is also rational.
Peter marks several cells on a \(5 \times 5\) board. His friend, Richard, will win if he can cover all of these cells with non-overlapping corners of three squares, that do not overlap with the border of the square (you can only place the corners on the squares). What is the smallest number of cells that Peter should mark so that Richard cannot win?
In the Republic of mathematicians, the number \(\alpha > 2\) was chosen and coins were issued with denominations of 1 pound, as well as in \(\alpha^k\) pounds for every natural \(k\). In this case \(\alpha\) was chosen so that the value of all the coins, except for the smallest, was irrational. Could it be that any amount of a natural number of pounds can be made with these coins, using coins of each denomination no more than 6 times?
A function \(f\) is given, defined on the set of real numbers and taking real values. It is known that for any \(x\) and \(y\) such that \(x > y\), the inequality \((f (x)) ^2 \leq f (y)\) is true. Prove that the set of values generated by the function is contained in the interval \([0,1]\).
In the isosceles triangle \(ABC\), the angle \(B\) is equal to \(30^{\circ}\), and \(AB = BC = 6\). The height \(CD\) of the triangle \(ABC\) and the height \(DE\) of the triangle \(BDC\) are drawn. Find the length \(BE\).
Three players are playing knockout table tennis – that is, the player who loses a game swaps places with the player who did not take part in that game and the winner stays on. In total Andrew played 10 games, Ben played 15, and Charlotte played 17. Which player lost the second game played?
On a ring road at regular intervals there are 25 posts, each with a policeman. The police are numbered in some order from 1 to 25. It is required that they cross the road so that there is a policeman on each post, but so that number 2 was clockwise behind number 1, number 3 was clockwise behind number 2, and so on. Prove that if you organised the transition so that the total distance travelled was the smallest, then one of the policemen will remain at his original post.