There are \(n\) random vectors of the form \((y_1, y_2, y_3)\), where exactly one random coordinate is equal to 1, and the others are equal to 0. They are summed up. A random vector a with coordinates \((Y_1, Y_2, Y_3)\) is obtained.
a) Find the mathematical expectation of a random variable \(a^2\).
b) Prove that \(|a|\geq \frac{1}{3}\).
On one island, one tribe has a custom – during the ritual dance, the leader throws up three thin straight rods of the same length, connected in the likeness of the letter capital \(\pi\), \(\Pi\). The adjacent rods are connected by a short thread and therefore freely rotate relative to each other. The bars fall on the sand, forming a random figure. If it turns out that there is self-intersection (the first and third bars cross), then the tribe in the coming year are waiting for crop failures and all sorts of trouble. If there is no self-intersection, then the year will be successful – satisfactory and happy. Find the probability that in 2019, the rods will predict luck.
An incredible legend says that one day Stirling was considering the numbers of Stirling of the second kind. During his thoughtfulness, he threw 10 regular dice on the table. After the next throw, he suddenly noticed that in the dropped combination of points there were all of the numbers from 1 to 6. Immediately Stirling reflected: what is the probability of such an event? What is the probability that when throwing 10 dice each number of points from 1 to 6 will drop out on at least one die?
According to one implausible legend, Cauchy and Bunyakovsky were very fond of playing darts in the evenings. But the target was unusual – the sectors on it were unequal, so the probability of getting into different sectors was not the same. Once Cauchy throws a dart and hits the target. Bunyakovsky throws the next one. Which is more likely: that Bunyakovsky will hit the same sector that Cauchy’s dart went into, or that his dart will land on the next sector clockwise?
Four outwardly identical coins weigh 1, 2, 3 and 4 grams respectively.
Is it possible to find out in four weighings on a set of scales without weights, which one weighs how much?
Three cyclists travel in one direction along a circular track that is 300 meters long. Each of them moves with a constant speed, with all of their speeds being different. A photographer will be able to make a successful photograph of the cyclists, if all of them are on some part of the track which has a length of \(d\) meters. What is the smallest value of \(d\) for which the photographer will be able to make a successful photograph sooner or later?
We took several positive numbers and constructed the following sequence: \(a_1\) is the sum of the initial numbers, \(a_2\) is the sum of the squares of the original numbers, \(a_3\) is the sum of the cubes of the original numbers, and so on.
a) Could it happen that up to \(a_5\) the sequence decreases (\(a_1> a_2> a_3> a_4> a_5\)), and starting with \(a_5\) – it increases (\(a_5 < a_6 < a_7 <\dots\))?
b) Could it be the other way around: before \(a_5\) the sequence increases, and starting with \(a_5\) – decreases?
A grasshopper can make jumps of 8, 9 and 10 cells in any direction on a strip of \(n\) cells. We will call the natural number \(n\) jumpable if the grasshopper can, starting from some cell, bypass the entire strip, having visited each cell exactly once. Find at least one \(n > 50\) that is not jumpable.
One hundred gnomes weighing each 1, 2, 3, ..., 100 pounds, gathered on the left bank of a river. They cannot swim, but on the same shore is a rowing boat with a carrying capacity of 100 pounds. Because of the current, it’s hard to swim back, so each gnome has enough power to row from the right bank to the left one no more than once (it’s enough for any one of the gnomes to row in the boat, the rower does not change during one voyage). Will all gnomes cross to the right bank?
The number \(x\) is such that both the sums \(S = \sin 64x + \sin 65x\) and \(C = \cos 64x + \cos 65x\) are rational numbers.
Prove that in both of these sums, both terms are rational.