A conference was attended by a finite group of scientists, some of whom are friends. It turned out that every two scientists, who have an equal number of friends at the conference, do not have friends in common. Prove that there is a scientist who has exactly one friend among the conference attendees.
A spherical sun is observed to have a finite number of circular sunspots, each of which covers less than half of the sun’s surface. These sunspots are said to be enclosed, that is no two sunspots can touch, and they do not overlap with one another. Prove that the sun will have two diametrically opposite points that are not covered by sunspots.
There are several squares on a rectangular sheet of chequered paper of size \(m \times n\) cells, the sides of which run along the vertical and horizontal lines of the paper. It is known that no two squares coincide and no square contains another square within itself. What is the largest number of such squares?
At what value of \(k\) is the quantity \(A_k = (19^k + 66^k)/k!\) at its maximum? You are given a number \(x\) that is greater than 1. Is the following inequality necessarily fulfilled \(\lfloor \sqrt{\!\sqrt{x}}\rfloor = \lfloor \sqrt{\!\sqrt{x}}\rfloor\)?
In a regular 1981-gon 64 vertices were marked. Prove that there exists a trapezium with vertices at the marked points.
In a square with side length 1 there is a broken line, which does not self-intersect, whose length is no less than 200. Prove that there is a straight line parallel to one of the sides of the square that intersects the broken line at a point no less than 101 units along the line.
A white plane is arbitrarily sprinkled with black ink. Prove that for any positive \(l\) there exists a line segment of length \(l\) with both ends of the same colour.
The tracks in a zoo form an equilateral triangle, in which the middle lines are drawn. A monkey ran away from its cage. Two guards try to catch the monkey. Will they be able to catch the monkey if all three of them can run only along the tracks, and the speed of the monkey and the speed of the guards are equal and they can always see each other?
The judges of an Olympiad decided to denote each participant with a natural number in such a way that it would be possible to unambiguously reconstruct the number of points received by each participant in each task, and that from each two participants the one with the greater number would be the participant which received a higher score. Help the judges solve this problem!
The numbers \(a_1, a_2, \dots , a_{1985}\) are the numbers \(1, 2, \dots , 1985\) rearranged in some order. Each number \(a_k\) is multiplied by its number \(k\), and then the largest number is chosen among the resulting 1985 products. Prove that it is not less than \(993^2\).