Does there exist a number \(h\) such that for any natural number \(n\) the number \(\lfloor h \times 2021^n\rfloor\) is not divisible by \(\lfloor h \times 2021^{n-1}\rfloor\)?
A monkey escaped from it’s cage in the zoo. Two guards are trying to catch it. The monkey and the guards run along the zoo lanes. There are six straight lanes in the zoo: three long ones form an equilateral triangle and three short ones connect the middles of the triangle sides. Every moment of the time the monkey and the guards can see each other. Will the guards be able to catch the monkey, if it runs three times faster than the guards? (In the beginning of the chase the guards are in one of the triangle vertices and the monkey is in another one.)
It is known that a camera located at \(O\) cannot see the objects \(A\) and \(B\), where the angle \(AOB\) is greater than \(179^\circ\). 1000 such cameras are placed in a Cartesian plane. All of the cameras simultaneously take a picture. Prove that there will be a picture taken in which no more than 998 cameras are visible.
In the country of Mara there are several castles. Three roads lead from each castle. A knight left from one of the castles. Traveling along the roads, he turns from each castle standing in his way, either to the right or to the left depending on the road on which he came. The knight never turns to the side which he turned before it. Prove that one day he will return to the original castle.
Prove that for every convex polyhedron there are two faces with the same number of sides.
Two identical gears have 32 teeth. They were combined and 6 pairs of teeth were simultaneously removed. Prove that one gear can be rotated relative to the other so that in the gaps in one gear where teeth were removed the second gear will have whole teeth.
The sum of 100 natural numbers, each of which is no greater than 100, is equal to 200. Prove that it is possible to pick some of these numbers so that their sum is equal to 100.
A conference was attended by a finite group of scientists, some of whom are friends. It turned out that every two scientists, who have an equal number of friends at the conference, do not have friends in common. Prove that there is a scientist who has exactly one friend among the conference attendees.
A spherical sun is observed to have a finite number of circular sunspots, each of which covers less than half of the sun’s surface. These sunspots are said to be enclosed, that is no two sunspots can touch, and they do not overlap with one another. Prove that the sun will have two diametrically opposite points that are not covered by sunspots.
There are several squares on a rectangular sheet of chequered paper of size \(m \times n\) cells, the sides of which run along the vertical and horizontal lines of the paper. It is known that no two squares coincide and no square contains another square within itself. What is the largest number of such squares?