Problems

Age
Difficulty
Found: 1860

Let \(M\) be the point of intersection of the medians of the triangle \(ABC\), and \(O\) an arbitrary point on a plane. Prove that \[OM^2 = 1/3 (OA^2 + OB^2 + OC^2) - 1/9 (AB^2 + BC^2 + AC^2).\]

Three non-coplanar vectors are given. Is it possible to find a fourth vector perpendicular to the three vectors given?

Find the volume of an inclined triangular prism whose base is an equilateral triangle with sides equal to a if the side edge of the prism is equal to the side of the base and is inclined to the plane of the base at an angle of \(60^{\circ}\).

In the dense dark forest ten sources of dead water are erupting from the ground: named from #1 to #10. Of the first nine sources, dead water can be taken by everyone, but the source #10 is in the cave of the dark wizard, from which no one, except for the dark wizard himself, can collect water. The taste and color of dead water is no different from ordinary water, however, if a person drinks from one of the sources, then he will die. Only one thing can save him: if he then drinks poison from a source whose number is greater. For example, if he drinks from the seventh source, then he must necessarily drink poison from the #8, #9 or #10 sources. If he doesn’t drink poison from the seventh source, but does from the ninth, only the poison from the source #10 will save him. And if he originally drinks the tenth poison, then nothing will help him now. Robin Hood summoned the dark wizard to a duel. The terms of the duel were as follows: each brings with him a mug of liquid and gives it to his opponent. The dark wizard was delighted: “Hurray, I will give him poison #10, and Robin Hood can not be saved! And I’ll drink the poison, which Robin Hood brings to me, then ill drink the #10 poison and that will save me!” On the appointed day, both opponents met at the agreed place. They honestly exchanged mugs and drank what was in them. However, afterwards erupted the joy and surprise of the inhabitants of the dark forest, when it turned out that the dark wizard had died, and Robin Hood remained alive! Only the Wise Owl was able to guess how Robin Hood had managed to defeat dark wizard. Try and guess as well.

Prove that the following facts are true for any graph:

a) The sum of degrees of all vertices is equal to twice the number of edges (and therefore it is even);

b) The number of vertices of odd degree is even.

During a chess tournament, some of the players played an odd number of games. Prove that the number of such players is even.

48 blacksmiths must shoe 60 horses. Each blacksmith spends 5 minutes on one horseshoe. What is the shortest time they should spend on the work? (Note that a horse can not stand on two legs.)

a) Prove that within any 6 whole numbers there will be two that have a difference between them that is a multiple of 5.

b) Will this statement remain true if instead of the difference we considered the total?