Problems

Age
Difficulty
Found: 1867

Which of the following numbers are divisible by \(11\) and which are not? \[121,\, 143,\, 286, 235, \, 473,\, 798, \, 693,\, 576, \,748\] Can you write down and prove a divisibility rule which helps to determine if a three digit number is divisible by \(11\)?

Sometimes one can guess certain multiples of a number just by looking at it, the idea of this sheet is to learn to recognise quickly using tricks when a natural number is divisible by another number.

Today we will study the method of finding the amount of combinations, or consecutive actions, or ways to select items from a bag which is called the Product rule. The main idea of this combinatorial is the following: if you are asked to perform an action that can be done in, say \(5\) ways and another action afterwards that can be done in \(4\) ways, then the total number of possibilities to perform two consecutive actions would be equal to \(5\times 4\). The reason for this is the opportunity to choose \(4\) possible second actions for each of the \(5\) choices of the first action already made before.

In how many ways can eight rooks be arranged on the chessboard in such a way that none of them can take any other. The color of the rooks does not matter, it’s everyone against everyone.

How many five-digit numbers are there which are written in the same from left to right and from right to left? For example the numbers \(54345\) and \(12321\) satisfy the condition, but the numbers \(23423\) and \(56789\) do not.

Definition A set is a collection of elements, containing only one copy of each element. The elements are not ordered, nor they are governed by any rule. We consider an empty set as a set too.
There is a set \(C\) consisting of \(n\) elements. How many sets can be constructed using the elements of \(C\)?

There are six letters in the alphabet of the Bim-Bam tribe. A word is any sequence of six letters that has at least two identical letters. How many words are there in the language of the Bim-Bam tribe?

A rectangular parallelepiped of the size \(m\times n\times k\) is divided into unit cubes. How many rectangular parallelepipeds are formed in total (including the original one)?

In the Land of Linguists live \(m\) people, who have opportunity to speak \(n\) languages. Each person knows exactly three languages, and the sets of known languages may be different for different people. It is known that \(k\) is the maximum number of people, any two of whom can talk without interpreters. It turned out that \(11n \leq k \leq m/2\). Prove that then there are at least \(mn\) pairs of people in the country who will not be able to talk without interpreters.

A group of \(15\) elves decided to pay a visit to their relatives in a distant village. They have a horse carriage that fits only \(5\) elves. In how many ways can they assemble the ambassador team, if at least one person in the team needs to be able to operate the carriage, and only \(5\) elves in the group can do that?