Problems

Age
Difficulty
Found: 2382

(USAMO 1997) Let \(p_1, p_2, p_3,\dots\) be the prime numbers listed in increasing order, and let \(0 < x_0 < 1\) be a real number between 0 and 1. For each positive integer \(k\), define \[x_k = \begin{cases} 0 & \text{ if } x_{k-1} = 0 \\ \left\{\frac{p_k}{x_{k-1}} \right\} & \text{ if } x_{k-1} \neq 0 \end{cases}\] where \(\{x\}\) denotes the fractional part of \(x\). For example, \(\{2.53\} = 0.53\) and \(\{3.1415926...\} = 0.1415926...\). Find, with proof, all \(x_0\) satisfying \(0 <x_0 <1\) for which the sequence \(x_0, x_1, x_2,\dots\) eventually becomes 0.

Take the number \(2026^{2026}\). We remove the leading digit and add it to the remaining number. This action is repeated until there are exactly \(10\) digits left. Show that there must be two digits that are the same in the end.