Problems

Age
Difficulty
Found: 1867

Prove that the number of all arrangements of the largest possible amount of peaceful bishops (figures that move on diagonals and don’t threaten each other) on the \(8\times 8\) chessboard is an exact square.

Can there exist two functions \(f\) and \(g\) that take only integer values such that for any integer \(x\) the following relations hold:

a) \(f (f (x)) = x\), \(g (g (x)) = x\), \(f (g (x)) > x\), \(g (f (x)) > x\)?

b) \(f (f (x)) < x\), \(g (g (x)) < x\), \(f (g (x)) > x\), \(g (f (x)) > x\)?

A resident of one foreign intelligence agency informed the centre about the forthcoming signing of a number of bilateral agreements between the fifteen former republics of the USSR. According to his report, each of them will conclude an agreement exactly with three others. Should this resident be trusted?

One term a school ran 20 sessions of an after-school Astronomy Club. Exactly five pupils attended each session and no two students encountered one another over all of the sessions more than once. Prove that no fewer than 20 pupils attended the Astronomy Club at some point during the term.

In Mexico, environmentalists have succeeded in enacting a law whereby every car should not be driven at least one day a week (the owner informs the police about their car registration number and the day of the week when this car will not be driven). In a certain family, all adults want to travel daily (each for their own business!). How many cars (at least) should the family have, if the family has a) 5 adults? b) 8 adults?

There are \(n\) integers. Prove that among them either there are several numbers whose sum is divisible by \(n\) or there is one number divisible by \(n\) itself.

In Mongolia there are in circulation coins of 3 and 5 tugriks. An entrance ticket to the central park costs 4 tugriks. One day before the opening of the park, a line of 200 visitors queued up in front of the ticket booth. Each of them, as well as the cashier, has exactly 22 tugriks. Prove that all of the visitors will be able to buy a ticket in the order of the queue.

We call a natural number “amazing” if it has the form \(a^b + b^a\) (where \(a\) and \(b\) are natural numbers). For example, the number 57 is amazing, since \(57 = 2^5 + 5^2\). Is the number 2006 amazing?

There is a \(5\times 9\) rectangle drawn on squared paper. In the lower left corner of the rectangle is a button. Kevin and Sophie take turns moving the button any number of squares either to the right or up. Kevin goes first. The winner is the one who places the button in upper right corner. Who would win, Kevin or Sophie, by using the right strategy?