Problems

Age
Difficulty
Found: 1860

Between them, Jennifer and Alex shared the money they made from running a lemonade stand. Jennifer thought: “If I took \(40\%\) more money then Alex’s share would decrease by \(60\%\)”. How would Alex’s share of the profits change if Jennifer took \(50\%\) more money for herself?

Two different numbers \(x\) and \(y\) (not necessarily integers) are such that \(x^2-2000x=y^2-2000y\). Find the sum of \(x\) and \(y\).

In a mathematical olympiad, \(m>1\) candidates solved \(n>1\) problems. Each candidate solved a different number of problems to all the others. Each problem was solved by a different number of candidates to all the others. Prove that one of the candidates solved exactly one problem.

A teacher filled the squares of a chequered table with \(5\times5\) different integers and gave one copy of it to Janine and one to Zahara. Janine selects the largest number in the table, then she deletes the row and column containing this number, and then she selects the largest number of the remaining integers, then she deletes the row and column containing this number, etc. Zahara performs similar operations, each time choosing the smallest numbers. Can the teacher fill up the table in such a way that the sum of the five numbers chosen by Zahara is greater than the sum of the five numbers chosen by Janine?

The student did not notice the multiplication sign between two three-digit numbers and wrote one six-digit number, which turned out to be seven times bigger than their product. Determine these numbers.

The student did not notice the multiplication sign between two seven-digit numbers and wrote one fourteen-digit number, which turned out to be three times bigger than their product. Determine these numbers.