Problems

Age
Difficulty
Found: 1922

The base of the pyramid is a square. The height of the pyramid crosses the diagonal of the base. Find the largest volume of such a pyramid if the perimeter of the diagonal section containing the height of the pyramid is 5.

A cinema contains 7 rows each with 10 seats. A group of 50 children went to see the morning screening of a film, and returned for the evening screening. Prove that there will be two children who sat in the same row for both the morning and the evening screening.

The volume of the regular quadrangular pyramid \(SABCD\) is equal to \(V\). The height \(SP\) of the pyramid is the edge of the regular tetrahedron \(SPQR\), the plane of the face \(PQR\) which is perpendicular to the edge \(SC\). Find the volume of the common part of these pyramids.

The height \(SO\) of a regular quadrilateral pyramid \(SABCD\) forms an angle \(\alpha\) with a side edge and the volume of this pyramid is equal to \(V\). The vertex of the second regular quadrangular pyramid is at the point \(S\), the centre of the base is at the point \(C\), and one of the vertices of the base lies on the line \(SO\). Find the volume of the common part of these pyramids.

In 25 boxes there are spheres of different colours. It is known that for any \(k\) where \(1 \leq k \leq 25\) in any \(k\) of the boxes there are spheres of exactly \(k+1\) different colours. Prove that a sphere of one particular colour lies in every single box.

The sequence \((a_n)\) is given by the conditions \(a_1 = 1000000\), \(a_{n + 1} = n \lfloor a_n/n\rfloor + n\). Prove that an infinite subsequence can be found within it, which is an arithmetic progression.

Given a square trinomial \(f (x) = x^2 + ax + b\). It is known that for any real \(x\) there exists a real number \(y\) such that \(f (y) = f (x) + y\). Find the greatest possible value of \(a\).

In the infinite sequence \((x_n)\), the first term \(x_1\) is a rational number greater than 1, and \(x_{n + 1} = x_n + \frac{1}{\lfloor x_n\rfloor }\) for all positive integers \(n\).

Prove that there is an integer in this sequence.

Note that in this problem, square brackets represent integers and curly brackets represent non-integer values or 0.

On the plane coordinate axes with the same but not stated scale and the graph of the function \(y = \sin x\), \(x\) \((0; \alpha)\) are given.

How can you construct a tangent to this graph at a given point using a compass and a ruler if: a) \(\alpha \in (\pi /2; \pi)\); b) \(\alpha \in (0; \pi /2)\)?