Problems

Age
Difficulty
Found: 2272

The nonzero numbers \(a\), \(b\), \(c\) are such that every two of the three equations \(ax^{11} + bx^4 + c = 0\), \(bx^{11} + cx^4 + a = 0\), \(cx^{11} + ax^4 + b = 0\) have a common root. Prove that all three equations have a common root.

\(2011\) numbers are written on a blackboard. It turns out that the sum of any three of these written numbers is also one of the written numbers. What is the minimum number of zeroes within this collection of \(2011\) numbers?

The teacher wrote on the board in alphabetical order all possible \(2^n\) words consisting of \(n\) letters A or B. Then he replaced each word with a product of \(n\) factors, correcting each letter A by \(x\), and each letter B by \((1 - x)\), and added several of the first of these polynomials in \(x\). Prove that the resulting polynomial is either a constant or increasing function in \(x\) on the interval \([0, 1]\).

The graph of the function \(y=kx+b\) is shown on the diagram below. Compare \(|k|\) and \(|b|\).

We are given a polynomial \(P(x)\) and numbers \(a_1\), \(a_2\), \(a_3\), \(b_1\), \(b_2\), \(b_3\) such that \(a_1a_2a_3 \ne 0\). It turned out that \(P (a_1x + b_1) + P (a_2x + b_2) = P (a_3x + b_3)\) for any real \(x\). Prove that \(P (x)\) has at least one real root.

There is a group of 5 people: Alex, Beatrice, Victor, Gregory and Deborah. Each of them has one of the following codenames: V, W, X, Y, Z. We know that:

Alex is 1 year older than V,

Beatrice is 2 years older than W,

Victor is 3 years older than X,

Gregory is 4 years older than Y.

Who is older and by how much: Deborah or Z?

Compare the numbers: \(A=2011\times 20122012\times 201320132013\) and \(B= 2013\times 20112011 \times 201220122012\).