Problems

Age
Difficulty
Found: 1679

After a circus came back from its country-wide tour, relatives of the animal tamer asked him questions about which animals travelled with the circus.

“Where there tigers?”

“Yes, in fact, there were seven times more tigers than non-tigers.”

“What about monkeys?”

“Yes, there were seven times less monkeys than non-monkeys.”

“Where there any lions?”

What is the answer he gave to this last question?

Solve this equation: \[(x+2010)(x+2011)(x+2012)=(x+2011)(x+2012)(x+2013).\]

There are a thousand tickets with numbers 000, 001, ..., 999 and a hundred boxes with the numbers 00, 01, ..., 99. A ticket is allowed to be dropped into a box if the number of the box can be obtained from the ticket number by erasing one of the digits. Is it possible to arrange all of the tickets into 50 boxes?

The nonzero numbers \(a\), \(b\), \(c\) are such that every two of the three equations \(ax^{11} + bx^4 + c = 0\), \(bx^{11} + cx^4 + a = 0\), \(cx^{11} + ax^4 + b = 0\) have a common root. Prove that all three equations have a common root.

2011 numbers are written on a blackboard. It turns out that the sum of any of these written numbers is also one of the written numbers. What is the minimum number of zeroes within this set of 2011 numbers?

The sequence of numbers \(a_1, a_2, \dots\) is given by the conditions \(a_1 = 1\), \(a_2 = 143\) and

for all \(n \geq 2\).

Prove that all members of the sequence are integers.

The teacher wrote on the board in alphabetical order all possible \(2^n\) words consisting of \(n\) letters A or B. Then he replaced each word with a product of \(n\) factors, correcting each letter A by \(x\), and each letter B by \((1 - x)\), and added several of the first of these polynomials in \(x\). Prove that the resulting polynomial is either a constant or increasing function in \(x\) on the interval \([0, 1]\).

The graph of the function \(y=kx+b\) is shown on the diagram below. Compare \(|k|\) and \(|b|\).