There is a group of 5 people: Alex, Beatrice, Victor, Gregory and Deborah. Each of them has one of the following codenames: V, W, X, Y, Z. We know that:
Alex is 1 year older than V,
Beatrice is 2 years older than W,
Victor is 3 years older than X,
Gregory is 4 years older than Y.
Who is older and by how much: Deborah or Z?
Compare the numbers: \(A=2011\times 20122012\times 201320132013\) and \(B= 2013\times 20112011 \times 201220122012\).
We are given \(n+1\) different natural numbers, which are less than \(2n\) (\(n>1\)). Prove that among them there will always be three numbers, where the sum of two of them is equal to the third.
Let \(x_1, x_2, \dots , x_n\) be some numbers belonging to the interval \([0, 1]\). Prove that on this segment there is a number \(x\) such that \[\frac{1}{n} (|x - x_1| + |x - x_2| + \dots + |x - x_n|) = 1/2.\]
51 points were thrown into a square of side 1 m. Prove that it is possible to cover some set of 3 points with a square of side 20 cm.
Prove that amongst numbers written only using the number 1, i.e.: 1, 11, 111, etc, there is a number than is divisible by 1987.
Prove that there is a power of 3 that ends in 001.
The numbers \(1, 2, \dots , 9\) are divided into three groups. Prove that the product of the numbers in one of the groups will always be no less than 72.
Prove that in any group of 10 whole numbers there will be a few whose sum is divisible by 10.
11 scouts are working on 5 different badges. Prove that there will be two scouts \(A\) and \(B\), such that every badge that \(A\) is working towards is also being worked towards by \(B\).