Problems

Age
Difficulty
Found: 2309

We are given a polynomial \(P(x)\) and numbers \(a_1\), \(a_2\), \(a_3\), \(b_1\), \(b_2\), \(b_3\) such that \(a_1a_2a_3 \ne 0\). It turned out that \(P (a_1x + b_1) + P (a_2x + b_2) = P (a_3x + b_3)\) for any real \(x\). Prove that \(P (x)\) has at least one real root.

There is a group of 5 people: Alex, Beatrice, Victor, Gregory and Deborah. Each of them has one of the following codenames: V, W, X, Y, Z. We know that:

Alex is 1 year older than V,

Beatrice is 2 years older than W,

Victor is 3 years older than X,

Gregory is 4 years older than Y.

Who is older and by how much: Deborah or Z?

Compare the numbers: \(A=2011\times 20122012\times 201320132013\) and \(B= 2013\times 20112011 \times 201220122012\).

Let \(x_1, x_2, \dots , x_n\) be some numbers belonging to the interval \([0, 1]\). Prove that on this segment there is a number \(x\) such that \[\frac{1}{n} (|x - x_1| + |x - x_2| + \dots + |x - x_n|) = 1/2.\]

A moth makes \(51\) little holes on a square cloth that is \(1\) meter on each side. Think of the holes as just tiny dots with no size. Explain why you can always cover at least \(3\) of the holes with a square patch that is \(20\) centimeters on each side.

The numbers \(1, 2, \dots , 9\) are divided into three groups. Prove that the product of the numbers in one of the groups will always be no less than 72.