On a function \(f (x)\), defined on the entire real line, it is known that for any \(a>1\) the function \(f (x) + f (ax)\) is continuous on the whole line. Prove that \(f (x)\) is also continuous on the whole line.
There are 7 points placed inside a regular hexagon of side length 1 unit. Prove that among the points there are two which are less than 1 unit apart.
Is it possible to transport 50 stone blocks, whose masses are equal to \(370, 372,\dots, 468\) kg, from a quarry on seven 3-tonne trucks?
9 straight lines each divide a square into two quadrilaterals, with their areas having a ratio of \(2:3\). Prove that at least three of the nine lines pass through the same point.
There is a counter on the chessboard. Two in turn move the counter to an adjacent on one side cell. It is forbidden to put a counter on a cell, which it has already visited. The one who can not make the next turn loses. Who wins with the right strategy?
On the dining room table, there is a choice of six dishes. Every day Valentina takes a certain set of dishes (perhaps, she does not take a single dish), and this set of dishes should be different from all of the sets that she took in the previous days. What is the maximum number of days that Valentina will be able to eat according to such rules and how many meals will she eat on average during the day?
The city plan is a rectangle of \(5 \times 10\) cells. On the streets, a one-way traffic system is introduced: it is allowed to go only to the right and upwards. How many different routes lead from the bottom left corner to the upper right?
27 coins are given, of which one is a fake, and it is known that a counterfeit coin is lighter than a real one. How can the counterfeit coin be found from 3 weighings on the scales without weights?
Is it possible to arrange 1000 line segments in a plane so that both ends of each line segment rest strictly inside another line segment?
Prove that for any number \(d\), which is not divisible by \(2\) or by \(5\), there is a number whose decimal notation contains only ones and which is divisible by \(d\).