Problems

Age
Difficulty
Found: 1890

A six-digit phone number is given. How many seven-digit numbers are there from which one can obtain this six-digit number by deleting one digit?

7 natural numbers are written around the edges of a circle. It is known that in each pair of adjacent numbers one is divisible by the other. Prove that there will be another pair of numbers that are not adjacent that share this property.

On a function \(f (x)\), defined on the entire real line, it is known that for any \(a>1\) the function \(f (x) + f (ax)\) is continuous on the whole line. Prove that \(f (x)\) is also continuous on the whole line.

There is a counter on the chessboard. Two in turn move the counter to an adjacent on one side cell. It is forbidden to put a counter on a cell, which it has already visited. The one who can not make the next turn loses. Who wins with the right strategy?

On the dining room table, there is a choice of six dishes. Every day Valentina takes a certain set of dishes (perhaps, she does not take a single dish), and this set of dishes should be different from all of the sets that she took in the previous days. What is the maximum number of days that Valentina will be able to eat according to such rules and how many meals will she eat on average during the day?

The city plan is a rectangle of \(5 \times 10\) cells. On the streets, a one-way traffic system is introduced: it is allowed to go only to the right and upwards. How many different routes lead from the bottom left corner to the upper right?

27 coins are given, of which one is a fake, and it is known that a counterfeit coin is lighter than a real one. How can the counterfeit coin be found from 3 weighings on the scales without weights?