In a group of friends, each two people have exactly five common acquaintances. Prove that the number of pairs of friends is divisible by 3.
Prove that the equation \[a_1 \sin x + b_1 \cos x + a_2 \sin 2x + b_2 \cos 2x + \dots + a_n \sin nx + b_n \cos nx = 0\] has at least one root for any values of \(a_1 , b_1, a_2, b_2, \dots, a_n, b_n\).
At a round table, 10 boys and 15 girls were seated. It turned out that there are exactly 5 pairs of boys sitting next to each other.
How many pairs of girls are sitting next to each other?
Prove that there exist numbers, that can be presented in no fewer than 100 ways in the form of a summation of 20001 terms, each of which is the 2000th power of a whole number.
Arrows are placed on the sides of a polygon. Prove that the number of vertices in which two arrows converge is equal to the number of vertices from which two arrows emerge.
In the government of the planet of liars and truth tellers there are \(101\) ministers. In order to reduce the budget, it was decided to reduce the number of ministers by \(1.\) But each of the ministers said that if they were to be removed from the government, then the majority of the remaining ministers would be liars. How many truth tellers and how many liars are there in the government?
Prove that in any group of friends there will be two people who have the same number of friends.
In chess, ‘check’ is when the king is under threat of capture from another piece. What is the largest number of kings that it is possible to place on a standard \(8\times 8\) chess board so that no two check one another.
Solve the equation \(2x^x = \sqrt {2}\) for positive numbers.
Let \(M\) be a finite set of numbers. It is known that among any three of its elements there are two, the sum of which belongs to \(M\).
What is the largest number of elements in \(M\)?