Problems

Age
Difficulty
Found: 1860

10 natural numbers are written on a blackboard. Prove that it is always possible to choose some of these numbers and write “\(+\)” or “\(-\)” between them so that the resulting algebraic sum is divisible by 1001.

A daisy has a) 12 petals; b) 11 petals. Consider the game with two players where: in one turn a player is allowed to remove either exactly one petal or two petals which are next to each other. The loser is the one who cannot make a turn. How should the second player act, in cases a) and b), in order to win the game regardless of the moves of the first player?

On the board the number 1 is written. Two players in turn add any number from 1 to 5 to the number on the board and write down the total instead. The player who first makes the number thirty on the board wins. Specify a winning strategy for the second player.

There are two stacks of coins on a table: in one of them there are 30 coins, and in the other – 20. You can take any number of coins from one stack per move. The player who cannot make a move is the one that loses. Which player wins with the correct strategy?

Prove that the equation \[a_1 \sin x + b_1 \cos x + a_2 \sin 2x + b_2 \cos 2x + \dots + a_n \sin nx + b_n \cos nx = 0\] has at least one root for any values of \(a_1 , b_1, a_2, b_2, \dots, a_n, b_n\).

Let \(f (x)\) be a polynomial about which it is known that the equation \(f (x) = x\) has no roots. Prove that then the equation \(f (f (x)) = x\) does not have any roots.

Prove that there exist numbers, that can be presented in no fewer than 100 ways in the form of a summation of 20001 terms, each of which is the 2000th power of a whole number.

Arrows are placed on the sides of a polygon. Prove that the number of vertices in which two arrows converge is equal to the number of vertices from which two arrows emerge.