Problems

Age
Difficulty
Found: 1755

Ten straight lines are drawn through a point on a plane cutting the plane into angles.
Prove that at least one of these angles is less than \(20^{\circ}\).

A rectangular billiard with sides 1 and \(\sqrt {2}\) is given. From its angle at an angle of \(45 ^\circ\) to the side a ball is released. Will it ever get into one of the pockets? (The pockets are in the corners of the billiard table).

In the acute-angled triangle \(ABC\), the heights \(AA_1\) and \(BB_1\) are drawn. Prove that \(A_1C \times BC = B_1C \times AC\).

Let \(AA_1\) and \(BB_1\) be the heights of the triangle \(ABC\). Prove that the triangles \(A_1B_1C\) and \(ABC\) are similar.

The bisector of the outer corner at the vertex \(C\) of the triangle \(ABC\) intersects the circumscribed circle at the point \(D\). Prove that \(AD = BD\).

The isosceles trapeziums \(ABCD\) and \(A_1B_1C_1D_1\) with corresponding parallel sides are inscribed in a circle. Prove that \(AC = A_1C_1\).

From the point \(M\), moving along a circle the perpendiculars \(MP\) and \(MQ\) are dropped onto the diameters \(AB\) and \(CD\). Prove that the length of the segment \(PQ\) does not depend on the position of the point \(M.\)

From an arbitrary point \(M\) on the side \(BC\) of the right angled triangle \(ABC\), the perpendicular \(MN\) is dropped onto the hypotenuse \(AB\). Prove that \(\angle MAN = \angle MCN\).

The diagonals of the trapezium \(ABCD\) with the bases \(AD\) and \(BC\) intersect at the point \(O\); the points \(B'\) and \(C'\) are symmetrical to the vertices \(B\) and \(C\) with respect to the bisector of the angle \(BOC\). Prove that \(\angle C'AC = \angle B'DB\).